

Bulldozers II
Tomasek,Hajic, Havranek, Taufer

Building database

● CSV -> SQL
○ Table trainRaw

■ 1 : 1 parsed csv data input

Building database

● table trainRaw
○ Columns need transformed into the form for

effective use
○ Foreach column:

■ Distinct analysis
■ String data into separate table
■ Replace with int indexed value
■ Create relation constraint

Structuring database

● trainRaw -> train table
○ fast access to data
○ useless data in detached tables

Using database

● SQL stored & compiled procedures and
functions for data analysis
○ getBestEnum
○ GetMedian
○ GetAvgVar

First solution - Decision tree

● solution for generic categorization
problem

● category
○ = price interval

● tree nodes
○ switches for Enums

Decision tree - example

Our data

● 39 different enums
● avg value range = 10
● choosing best enum for node

○ Variance vs. Count
○ counted in sql

■ first iteration takes ~10 min

Categories

● how big ?
○ no categories
○ fix size

■ according to fit function is $100 ok
○ variable size

■ 100 bulldozers for cat
○ use some genetic to find best size :)

Decision tree results

● depth 4
● runtime 2:34:02
● result 0.5431

To do

● don't use irrelevant enums
● sql optimizations
● multi core processing
● find some very strong Machine

Statistics

● Some columns give no usable information
● About half columns are machine type

specific

Second solution - genetic

● Population member
○ Expression tree

■ Evaluates price
○ Nodes

■ [Price] -> Price
■ Constant, Arithmetic, Sql Aggregation, Switch

● Fit function
○ Challenge official: RMSLE

● Reproduction
○ switching subtrees between father and

mother

Second solution - genetic

● Mutation
○ Specific per node type

■ Only few types can mutate
○ Random added members

■ Avoids of local extremes

Genetics - use & experience

● Original input parameters
○ Population size

■ Very large is not needed
■ For performance
■ Actual value 50 members

○ Max depth
■ For performance and convergence
■ 10 seems to be enough, actual value 12

○ Train data sample
■ Size

● Performance & miscellany, actual 25%
■ Select every generation / Keep same

Genetics - use & experience

● Added parameters
○ Min depth

■ Avoidance of
● One-node trees
● Train data specific expressions

○ Action probabilities
■ Reproduction

● Makes variety, actually 0.6
■ Clone

● Not important, actually 0.3
■ Mutation

● Important is high value, actually 0.7
● Helps with convergence
● Needs to upgrade in several node types

Genetics - use & experience

● Node type implementation & specific
tuning
○ Abstract node

■ Mutation is called recursively to children
○ Constant

■ Finite universum
● { k / 100 | k in N U {0} & k < 101 } U { pi, e }

■ Mutation
● + d where d is from {-0.01, 0, 0.01}

○ Arithmetic
■ +-*/ only binary

Genetics - use & experience

● Node type implementation & specific
tuning
○ SqlAgg

■ Defined by agg. function and selected data
columns

■ Returns aggregated price of database table rows
what have same values in selected columns

■ Mutation changes agg. function
● Maybe change of selected column is needed

○ Switch
■ Defined by one data column
■ k children

● k is loaded only once by column variety

Genetics - use & experience

● Evolution process implementation
○ For every generation

■ Selection
■ Reproduction & cloning
■ Mutation

○ Evaluating train data sample by each
member

○ Fit calculation
○ Best one serialisation
○ GC.Collect()

● Genetic process is very slow
○ Threadpool implemented

■ by member

Genetics - results

● First whole night run on full train data
○ 294 generations
○ Best result fit 0.49 (381 / 454)

■ Challenge leader has 0.22
■ Median benchmark has 0.74

○ Lesson
■ Min depth constraint

● Very simple data specific nodes broke population
development

■ Smaller train data sample
● More data-specific results and more performance

■ More mutation
■ More sql query parallelism
■ Sql results caching

Genetics - example

Neural networks

What have we tried?
- single MLP
- 10 classes of equal magnitude
- 18 / 51 features
- network structure 18 - 10 - 10

Neural networks

What have we tried ?(cont.)
- backpropagation learning algorithm
- different minimization techniques

- gradient descent
- conjugated gradient ((C) Andrew Ng)

- different values of regularization
- different training set sizes

How did it go?

Actual results

Best experiment:
- trained 10000 samples
- 50 iterations of Conjugate gradient
- classification accuracy on all training
data:

0.224
RMSLE on Validation data:

0.773
(mean benchmark: 0.74745)

What went wrong?

Non-numerical features
- overall: 8 comparable features
- 43 non-numerical features

Missing features
- not all features are available for all samples
- sometimes less than half
- => inaccurate guesswork

Time constraints
- not trained on all data (100k samples ~ 1

night)

What do we do about it?

Non-comparable features
- set up indicator variables

Missing features
- better guesswork (mean of class)

Further work

- multiple MLPs + agreement algorithm
- vary amount of classes
- vary class size

(equal magnitude vs. equal width)
- more detailed (class -> price) conversion
- different cost function

- factor in cost of misclassification
- different learning algorithm?

